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One Weird Trick to Untie Landin’s Knot
PAULETTE KORONKEVICH, University of British Columbia, Canada, pletrec@cs.ubc.ca
WILLIAM J. BOWMAN, University of British Columbia, Canada, wjb@williamjbowman.com

In this work, we explore Landin’s Knot, which is understood as a pattern for encoding general recursion,
including non-termination, that is possible after adding higher-order references to an otherwise terminating
language. We observe that this isn’t always true—higher-order references, by themselves, don’t lead to non-
termination. The key insight is that Landin’s Knot relies not primarily on references storing functions, but
on unrestricted quantification over a function’s environment. We show this through a closure converted
language, in which the function’s environment is made explicit and hides the type of the environment through
impredicative quantification. Once references are added, this impredicative quantification can be exploited to
encode recursion. We conjecture that by restricting the quantification over the environment, higher-order
references can be safely added to terminating languages, without resorting to more complex type systems
such as linearity, and without restricting references from storing functions.

1 INTRODUCTION
How do we add higher-order references to an otherwise pure functional language? The problem is
that higher-order references (that is, mutable references that can store higher-order functions) lead
to Landin’s Knot, which breaks strong normalization. While many languages value the expressivity
of higher-order references, some languages, such as dependently-typed languages, value strong
normalization as well. Existing languages often recover strong normalization by using linear
types, which carefully track the usage of references in the type system [1, 6]. However, linear
types are typically difficult to integrate into existing type systems, in particular, dependent types
[9]. Quantitative Type Theory (QTT) [3] is one language that succeeds at integrating linear and
dependent types, but it aims to provide a framework for reasoning about resources in general,
which seems a heavyweight solution to ruling out non-termination.

To explore alternative methods for adding higher-order references to pure functional lan-
guages, let’s study Landin’s Knot in detail. Landin’s Knot [7] refers to encoding recursion through
backpatching—updating a mutable reference to create a cyclic data structure. In this case, the cyclic
data structure happens to be a closure, and a reference is updated to contain the closure itself,
enabling recursion. This idea is illustrated through the following program in the simply typed
lambda calculus (STLC) with references, which diverges.

𝑖𝑑 : Nat → Nat
𝑖𝑑 = (𝝀𝑥 .𝑥)
𝑟 : Ref (Nat → Nat)
𝑟 = new 𝑖𝑑

𝑓 : Nat → Nat
𝑓 = (𝝀𝑥 .((deref 𝑟 ) 𝑥))
𝑟 := 𝑓 ; 𝑓 0

The function 𝑓 closes over the reference 𝑟 , and calls whatever function is stored in 𝑟 . Initially, 𝑟
contains an arbitrary function of the right type, but is later updated to contain 𝑓 itself. After the
update, 𝑓 diverges when called.

The literature often attributes Landin’s Knot merely to be due to references storing functions.
“… recursion can be encoded using function storage, as noted by Landin (folklore).” [8]
“… in languages with higher-order store, it is usually possible to write recursion
operators by backpatching function pointers.” [6]

However, the actual cause of the recursion is due to the update to the function’s environment through
the store, not by storing the function in a reference. Even more interestingly, this update to the
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function’s environment actually requires impredicativity to be well typed, but this impredicativity
is implicit and hidden in the usual function type. This impredicativity exists in function types even
if not explicit in the type system. We conjecture that restricting this impredicativity is one way to
recover strong normalization, without the use of linear types.
We can make this observation more precise by closure converting the example. Closure con-

version transforms functions into explicit closures, that is, pairs of closed procedure code with its
environment. To type closures, we use the usual typing from Minamide et al. [10], where closures
are typed as existential pairs, abstracting the type of the environment. The environment is a tuple
of the free variables from the procedure code.

𝑖𝑑 : ∃ 𝛼.⟨(Nat → 𝛼 → Nat) × 𝛼⟩
𝑖𝑑 = pack⟨⟨⟩, ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 .𝑥), ⟨⟩⟩⟩
𝑟 : Ref (∃ 𝛼.⟨(Nat → 𝛼 → Nat) × 𝛼⟩) -- abbreviated Reftype below
𝑟 = new 𝑖𝑑

𝑓 : ∃ 𝛼.⟨(Nat → 𝛼 → Nat) × 𝛼⟩
𝑓 = pack⟨⟨Reftype ⟩, ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 : ⟨Reftype ⟩.let 𝑟 = proj1 𝑒𝑛𝑣 in (deref 𝑟 ) 𝑥), ⟨𝑟 ⟩⟩⟩
𝑟 := 𝑓 ; (proj1 𝑓 ) 0 (proj2 𝑓 )

The functions 𝑓 and 𝑖𝑑 have the same type as closures, since the type of the environment is
abstract. The 𝑟 reference is then updated with a closure that contains 𝑟 in its environment, and
is well typed precisely because of the (implicit) impredicativity of the existential pair. The sort of
universe of 𝛼 is unrestricted, as is normal in System F, meaning the existentially quantification
variable 𝛼 can include the existential itself, or a reference that contains the existential.

2 BACKGROUND AND RELATEDWORK
Related work modelling references often divide references into three categories. Ground references
store only base types, full-ground [11] (or sometimes called recursive) references store base types
and other references, and higher-order references store unrestricted higher-order functions. With
the closure-converted Landin’s Knot example, we see a middle ground between a terminating
language with a full-ground store and a non-terminating language with a higher-order store.

The impredicativity requirement to type Landin’s Knot has been recognized, but unexplored, in
past work modeling languages with higher-order references. Levy [8] describes a possible world
semantics to model languages with these three different kinds of references, and modeling functions
in the store requires recursive domain equations. Kammar et al. [5] model full-ground references,
but observe that in order to model higher-order references, recursive domain equations or step
indexing is required. Ahmed [2] notes the circularity of modeling a store as mapping a location to a
type, and that types are modelled as a predicates on stores, explicitly noting that the impredicative
quantification of existential types is related to this circularity, but uses step-indexing to side-step
this circularity. All this prior work describe possible models for higher-order references, but they do
not investigate the alternative to impredicative quantification over a function’s environment. Thus,
our proposal is: design a language with higher-order references that is terminating by requiring
predicativity with respect to environments and by interpreting the store inductively. The store at
one level will depend only on the interpretation of terms at a lower universe, with a ground store
as the base case.

3 PROPOSAL FOR LANGUAGE DESIGN
The closure-converted Landin’s Knot shows us that the non-termination is due to updates to the
function’s environment. This guides us in our language design proposal; there needs to be some
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restriction on the types of the free variables a function closes over. We use the :: annotation to
indicate the sort of a type.

To see how we might restrict the environment, consider the (perhaps overly) restrictive approach
where we only allow full-ground references to appear in the environment. Below are a possible
typing rule for closures and the (back-translated) equivalent rule for source language functions.
Γ ⊢ 𝜏 :: full-ground Γ ⊢ 𝑒 : 𝜏1 [𝜏/𝛼]

Γ ⊢ pack⟨𝜏, 𝑒⟩ : ∃ 𝛼.𝜏1

Γ ⊢ 𝐹𝑉 (𝑒) : 𝜏 :: full-ground · · · Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝝀𝑥 : 𝜏1 .𝑒 : 𝜏1 → 𝜏2

In both rules, we use the sort to restrict the type of the environment. Either the type of the
environment 𝜏 is restricted, or the types of free variables in the body of a function are restricted to
be of a full-ground sort. Since closures are not ground types, Landin’s Knot cannot be well typed.
References can store closures, but the closures themselves are restricted. In a source language with
references, this restricts the free variables in the function body to be full-ground. The downside
of this approach is that higher-order closures would not be possible to encode, assuming that all
closures must be allocated in mutable cells (heap allocated).
An alternative approach is to restrict the quantification over environments in closures. Each

environment is typed at a the highest universe level of the types in the environment.
Γ ⊢ 𝜏 :: Type𝑗 Γ ⊢ 𝑒 : 𝜏1 [𝜏/𝛼]
Γ ⊢ pack⟨𝜏, 𝑒⟩ : ∃ 𝛼 : Type𝑗 .𝜏1

Γ, 𝛼 : Type𝑗 ⊢ 𝜏1 :: Type𝑘
Γ ⊢ ∃ 𝛼 : Type𝑗 .𝜏1 :: Type𝑘

Γ ⊢ 𝐹𝑉 (𝑒) : 𝜏 :: Type𝑖 · · · max(. . . 𝑖 . . .) = 𝑗 Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2 :: Type𝑘
Γ ⊢ 𝝀𝑥 : 𝜏1.𝑒 : 𝜏1 → 𝜏2 :: Type𝑗

Existential types in the target language are standard—impredicative, which is necessary to type
higher-order closures, but with an explicit sort annotation on the existentially bound variable. Note
that for closures in particular, because the environment shows up in type 𝜏1 = 𝐶 × 𝛼 , a closure with
environment 𝛼 : Type𝑗 must live in Type𝑗 as well. The means closures can capture other closures,
including closures of the same type, as is expected by closure conversion.

Functions are impredicative in their parameter, but predicative in the types of their environment
variables; we’ve combined the typing and sort of functions above to express this. This makes the
sort of the environment explicit in the source language typing rule, and forces a function’s sort to
be the same as its environment, as in the closure converted language.
Finally, we add the following sort rule for references, which breaks the circularity when a

reference contains a closure, preventing an environment from containing a reference that contains
its own type.

Γ ⊢ 𝐴 :: Type𝑖
Γ ⊢ Ref 𝐴 :: Type𝑖+1

Base types are at level 0, but references bump up the level of the stored type by 1. A reference
cannot be updated to contain a closure that contains itself, since the type level of the environments
would be necessarily lower than the type of the reference that must contain the environment. A
closure can capture its own type in its environment, but it cannot capture a Ref of its own type.1
Typing our earlier example with these rules, the environment of the closure 𝑓 contains a reference,
so its environment type is forced to be of sort Type1, while 𝑖𝑑’s environment type is Type0. This
approach is similar to the step-indexing model developed by Ahmed [2], but makes type levels
explicit in the type system, rather than in the meta-theory.
1We give a full derivation in Appendix A.
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We have yet to prove any of these proposed languages terminating, and are still open to exploring
other designs as well. But the intuition is that the semantics of stores will be inductive on the
universe level, with each level able to contain only functions that close over the previous level of
stores. At level 0 the semantics is equivalent to a ground store, and so the store must contain only
terminating functions. Our eventual goal is to extend this language design not only to a simply
typed language, but also to a dependently typed language like the Calculus of Constructions (CC).
This could serve as an IL for a type-preserving compiler from CC to a low-level language like C,
enabling a compiler with a type-check-then-link approach [4].
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A APPENDIX
Below we have the tree for deriving that 𝑖𝑑 has type ∃ 𝛼 : Type0 .(Nat → 𝛼 → Nat) × 𝛼 , using our proposed typing rules.

Γ ⊢ ⟨⟩ :: Type0

Γ ⊢ (𝝀𝑥 .𝝀𝑒𝑛𝑣 .𝑥) : Nat → ⟨⟩ → Nat :: Type0 Γ ⊢ ⟨⟩ : ⟨⟩ :: Type0
Γ ⊢ ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 .𝑥), ⟨⟩⟩ : (Nat → 𝛼 → Nat) × 𝛼 [⟨⟩/𝛼]

Γ ⊢ pack⟨⟨⟩, ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 .𝑥), ⟨⟩⟩⟩ : ∃ 𝛼 : Type0.(Nat → 𝛼 → Nat) × 𝛼 :: Type0
Below we have the tree for deriving that 𝑓 has type ∃ 𝛼 : Type1.(Nat → 𝛼 → Nat) × 𝛼 , using our proposed typing rules. The function

body has been abbreviated to 𝑒 . Reftype is Ref (∃ 𝛼 : Type0.(Nat → 𝛼 → Nat) × 𝛼), which we expand when we derive its sort, but abbreviate
otherwise. We omit the subtree of deriving the type for the function body 𝑒 , as it is similar to the 𝑖𝑑 case and not interesting. The proposed
rule for Ref bumps the sort level of the environment of 𝑓 , which in turn bumps the sort level for the pair of code and environment, since the
environment contains a reference.

by derivation 𝐷1

Γ ⊢ ⟨Reftype ⟩ :: Type1

Γ ⊢ (𝝀𝑥 .𝝀𝑒𝑛𝑣 : ⟨Reftype ⟩.𝑒) : Nat → ⟨Reftype ⟩ → Nat :: Type1

by derivation 𝐷1

Γ ⊢ ⟨Reftype ⟩ :: Type1
Γ ⊢ ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 : ⟨Reftype ⟩.𝑒), ⟨𝑟 ⟩⟩ : (Nat → 𝛼 → Nat) × 𝛼 [⟨Reftype ⟩/𝛼] :: Type1

Γ ⊢ pack⟨⟨Reftype ⟩, ⟨(𝝀𝑥 .𝝀𝑒𝑛𝑣 : ⟨Reftype ⟩.𝑒), ⟨𝑟 ⟩⟩⟩ : ∃ 𝛼 : Type1.⟨(Nat → 𝛼 → Nat) × 𝛼⟩ :: Type1
where 𝐷1 is

Ref

Γ ⊢ Type0 :: Type1 Γ, 𝛼 :: Type0 ⊢ (Nat → 𝛼 → Nat) × 𝛼 :: Type0

Γ ⊢ ∃ 𝛼 : Type0.(Nat → 𝛼 → Nat) × 𝛼 :: Type0

Γ ⊢ Ref (∃ 𝛼 : Type0.(Nat → 𝛼 → Nat) × 𝛼) :: Type1

Γ ⊢ ⟨Reftype ⟩ :: Type1
Because of the differing sort annotations, the update to the reference 𝑟 cannot be well typed. This prevents the non-termination caused by

backpatching.
More generally, the derivation of 𝐷1 shows how the type of the Ref must be one greater than the environment of the closure it contains, so

the Ref cannot appear in the environment of a closure it contains.
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